

DNBSEQ™ Sequencing to Identify HIV-1 Drug Resistance Mutations

Sofiane Mohamed¹, Julie Matinez¹, Rezak Drali¹, Amira Doudou¹, Roberta Capuana², Souraka Tapara Dramani Maman², Arthur Sheng Jiang², Chalom Sayada³, Ludwig Ortner Eurlings² and Laura Pellegrino² ¹ABL Diagnostics, FRANCE; ²Latvia MGI Tech SIA, Lidostas Parks, LV-2167 Riga, Latvia; ³ABL Diagnostics SA, LUXEMBOURG

Introduction

Subtype and drug-resistance mutations were mostly assessed routinely using Capillary Electrophoresis (CE) sequencing which does not detect co-infection or minor variants (frequency below 15-20%). Next Generation Sequencing (NGS) has become the new standard for genotypic drug resistance testing on the full HIV-1 polymerase gene. The objective of this study was to evaluate the performances of ABL DeepChek[®] DNBSEQ Native kit on Complete Genomics' DNBSEQ-G99 sequencing platform using HIV-1 Quality Control for Molecular Diagnostics (QCMD) samples.

All samples were accurately genotyped, two subtypes B, two subtypes C and one recombinant from 02_AG were identified. The median coverage per sample was 9.000.000 of reads and the Q30 was 94% on DNBSEQ-G99. 100 % of concordance was found for the detection of drug resistant mutations (>5%) for the protease, reverse transcriptase, and integrase regions. On protease, for one sample the minority mutation V32I at 3 % was found.

Figure 1: A diagram of the 9.8 kb HIV-1 genome. The pol portion of the genome is transcribed into the protease, reverse transcriptase and integrase.

Methods

A total of 5 HIV RNA positive plasmas (QCMD) at a range of 4.20 to 5.31 Log10 copies/mL were amplified and Complete Genomics DNBSEQ using sequenced technology. The protease, sequencing reverse transcriptase and integrase genes were amplified, libraries were prepared and sequenced using DeepChek[®] native kit for DNBSEQ (ABL) on the DNBSEQ-G99 sequencing platform. DeepChek[®] HIV software (ABL) was used for the interpretation of subtype and drug resistance according to the French ANRS v33 (National Agency for AIDS Research), Grade 9-2021 and HIVdb 9.4 12-2022.

Sample	Viral load	Subtype	Protease	Reverse	Integrase
			mutation	transcriptase	mutation
QCMD 1	5.31	В	L10I (92%)	No	No
			L10V (7%)		
			K20R (40%)		
			L33I (17%)		
			M46I (97%)		
			I54V (99%)		
			L63P (97%)		
			A71T (99%)		
			V82A (98%)		
			L90M (96%)		
QCMD 2	4.20	A/G	No	V179I (99%)	No
QCMD 3	4.97	C		M41L (99%)	No
				E44D (34%)	
				D67N (99%)	
				T69D (99%)	
			K20R (98%)	A98G (99%)	
			L63P (98%)	M184I (99%)	
				Y188L (99%)	
				G190A (99%)	
				L210W (99%)	
				T215Y (97%)	
QCMD 4	4.40	В	No	M41L (98%)	No
				M184V (97%)	
				L210W (99%)	
				T215Y (98%)	
QCMD 5	4.69	C	G16E (98%)		No
			K20R (95%)	M184V (99%)	
			M46I (99%)		
			154V (98%)		
			V82A (96%)		
			V32I (3%)		

Figure 3 : Example of DeepChek [®] reports with covered positions, subtyping, mutation of interest and antiretrovural drug interprétations. **(A)** QCMD4; **(B)** QCMD5

Clinical report

Complete Genomicss DNA Nanoball Sequencing: ☑Linear amplification Low ☑ amplification bias ☑ No amplification error accumulation Lower ☑ index hopping DeepChek[®] (ABL, Luxembourg) is a CE marked:
The pipelines consist of 10 major steps which are :
1) Data cleaning, 2) Subtyping, 3) Tropism analysis, 4)
Alignment, 5) Post-alignment cleaning, 6) Consensus creation,
7) Variant calling, 8) Expert system filtering, 9) Drug resistance calculation, 10) Reporting

DeepChek[®] HIV version 2.0 / expert system 2.3 /algorithms 13.1
 ANRS 33 10-2022 / Grade 2021 9-2021 / HIVdb 9.4 12-2022
 Classification of mutations of interest ANRS 33

Figure 2: End-to end Solution for HIV-1 Genotyping and Drug Resistance for Routine Diagnostic Sequencing.

Conclusions

This study is the first evaluation of HIV-1 QCMD samples using the DeepChek[®] assays on Complete Genomics DNBSEQ Sequencing platform. DNBSEQ Sequencing platforms are suitable for evaluation of HIV-1 QCMD samples. The DNBSEQ-G99 can identify HIV-1 minor variants (3-20%) conferring drug resistance. The NGS should occupy a major place in HIV, HCV and HBV applications testing for subtyping, mutation determination and analysis, and drug resistance surveillance.